New Families of Solitary Pattern Solutions of the Nonlinear Dispersive K(n, m, k) Equations
نویسنده
چکیده
Travelling wave solutions are important in nonlinear science. These solutions describe phenomena such as vibrations, solitons and propagation with finite speed. In recent years, direct search for exact solutions of nonlinear partial differential equations (PDEs) has become more and more attractive, partly due to the availability of computer systems like Maple or Mathematica, which allow to perform complicated and tedious algebraic calculations and to find new exact solutions of PDEs [1 – 4]. In 1993 Rosenau and Hyman [5] introduced a class of PDEs, i. e.
منابع مشابه
A Study for Obtaining more Compacton Solutions of the Modified Form of Fifth-order Korteweg-De Vries-like Equations
For a < 0 one obtains solitary patterns having cusps or infinite slopes [2]. They discovered solitary waves, called compactons, with a compact support characterized by the absence of infinite wings or the absence of infinite tails. If a = 1, then (1) has a focusing (+) branch that exhibits compacton solutions. If a = −1, then (1) has a defocusing (−) branch that exhibits solitary pattern soluti...
متن کاملStability of Compacton Solutions of Fifth-Order Nonlinear Dispersive Equations
We consider fifth-order nonlinear dispersive K(m,n, p) type equations to study the effect of nonlinear dispersion. Using simple scaling arguments we show, how, instead of the conventional solitary waves like solitons, the interaction of the nonlinear dispersion with nonlinear convection generates compactons the compact solitary waves free of exponential tails. This interaction also generates ma...
متن کاملSolitary Waves With Higher Order Nonlinear Dispersion and Stability of Compacton Solutions
We consider fifth order nonlinear dispersive K(m,n, p) type equations to study the effect of nonlinear dispersion. Using simple scaling arguments we show, how, instead of the conventional solitary waves like solitons, the interaction of the nonlinear dispersion with nonlinear convection generates compactons the compact solitary waves free of exponential tails. This interaction also generates ma...
متن کاملSolutions structure of integrable families of Riccati equations and their applications to the perturbed nonlinear fractional Schrodinger equation
Some preliminaries about the integrable families of Riccati equations and solutions structure of these equations in several cases are presented in this paper, then by using of definitions for fractional derivative we apply the new extended of tanh method to the perturbed nonlinear fractional Schrodinger equation with the kerr law nonlinearity. Finally by using of this method and solutions of Ri...
متن کاملCompact and noncompact dispersive patterns
We discuss the pivotal role played by the nonlinear dispersion in shaping novel, compact and noncompact patterns. It is Ž n. shown that if the normal velocity of a planar curve is Usy k , n)1, where k is the curvature, then the solitary s disturbances may propagate like compactons. We extend the KP and the Boussinesq equations to include nonlinear dispersion to the effect that the new equations...
متن کامل